DPP - 4 (Work, Energy \& Power)

Video Solution on Website:- https://physicsaholics.com/home/courseDetails/38

Video Solution on YouTube:- https://youtu.be/bMDNILE7ovE

Written Solution on Website:-
 https://physicsaholics.com/note/notesDetalis/43

Q 1. Potential energy v/s position curve for one dimensional conservative field is shown. Force at A and B is respectively

(a) Positive, Positive
(b) Positive, Negative
(c) Negative, Positive
(d) Negative, Negative

Q 2. A particle is being acted upon by one dimensional conservative force. In the $\mathrm{F}-\mathrm{x}$ curve shown, four points J, K, L, M are marked on the curve. State which type of equilibrium is the particle have at position L

(a) stable equilibrium
(b) unstable
(c) Neutral
(d) No equilibrium

Q 3. A particle located in one dimensional potential field has potential energy function $U(x)=\frac{a}{x^{2}}-\frac{b}{x^{3}}$, where a and b are positive constants. The position of equilibrium corresponds to x equal to
(a) $\frac{3 a}{2 b}$
(b) $\frac{2 b}{3 a}$
(c) $\frac{2 a}{3 b}$
(d) $\frac{3 b}{2 a}$

Q 4. In a conservative field at stable equilibrium potential energy is:
(a) Maximum
(b) Minimum
(c) Constant
(d) None of these

Q 5. The power of pump, which can pump 200 kg of water to a height of 50 m in 10 sec , will be $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
(a) 10×10^{3} watt
(b) 20×10^{3} watt
(c) 4×10^{3} watt
(d) $60 \times 10^{3} \mathrm{watt}$

Q 6. If the power of the motor of a water pump is 3 kW , then the volume of water in liters that can be lifted to a height of 10 m in one minute by the pump is $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right.$ and density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$)
(a) 1800
(b) 180
(c) 18000
(d) 18

Q 7. If the heart pushes 1 cc of blood in one second under pressure $20000 \mathrm{~N} / \mathrm{m}^{2}$ the power of heart is
(a) 0.02 W
(b) 400 W
(c) 50 W
(d) 0.2 W

Q 8. The power of a heart which pumps $5 \times 10^{3} c c$ of blood per minute at a pressure of 120 mm of mercury $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right.$ and density of $\left.\mathrm{Hg}=13.6 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)$ is
(a) 1.36 W
(b) 13.6 W
(c) 0.136 W
(d) 136 W

Q 9. A particle moves with a velocity $\vec{V}=(5 \hat{\imath}-3 \hat{\jmath}+6 \hat{k}) \mathrm{m} / \mathrm{s}$ under the influence of a constant force $\vec{F}=(10 \hat{\imath}+10 \hat{\jmath}+20 \hat{k}) N$, the instantaneous power applied to the particle is
(a) 200 W
(b) 320 W
(c) 140 W
(d) 170 W

Q 10. A motor boat is travelling with a speed of $3.0 \mathrm{~m} / \mathrm{sec}$. If the force on it due to water flow is 500 N , the power of the boat is
(a) 150 KW
(b) 15 KW
(c) 1.5 KW
(d) 150 W

Q 11. An engine develops 10 kW of power. How much time will it take to lift a mass of 200 kg to a height of $40 \mathrm{~m}\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
(a) 4 sec
(b) 5 sec
(c) 8 sec
(d) 10 sec

Q 12. A 10 H.P. motor pumps out water from a well of depth 20 m and fills a water tank of volume 22380 liters at a height of 10 m from the ground. the running time of the motor to fill the empty water tank is $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
(a) 5 minutes
(b) 10 minutes
(c) 15 minutes
(d) 20 minutes

Answer Key

Q. 1 b	Q. 2 a	Q. 3 d	Q. 4 b	Q. 5 a
Q. 6 a	Q. 7 a	Q. 8 a	Q. 9 c	Q. 10 c
Q. 11 c	Q. 12 c			

